手电大家谈-手电筒爱好者之家

 找回密码
 注册成为会员,享受更多功能。

QQ登录

只需一步,快速开始

只需一步,快速开始

搜索
查看: 6818|回复: 14

[电子电路] 科普 同步整流

[复制链接]
  • TA的每日心情
    开心
    2022-7-23 18:52
  • 签到天数: 23 天

    [LV.4]偶尔看看III

    发表于 2016-5-5 09:41 | 显示全部楼层 |阅读模式

    马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

    您需要 登录 才可以下载或查看,没有账号?注册成为会员,享受更多功能。

    x
    同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。

    简介[url=]编辑[/url]同步整流的基本电路结构
    功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
    PS7516和PS7616是锂电池升压输出5V1A,2A的同步整流升压经典IC,FP6717,FP6716也是锂电池升压输出5V3A,5V2A中的佼佼者。
    为什么要应用同步整流技术
    电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。
    开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。

    举例说明,笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)PO,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。
    同步整流比之于传统的肖特基整流技术可以这样理解:
    这两种整流管都可以看成一扇电流通过的门,电流只有通过了这扇门才能供负载使用。
    传统的整流技术类似于一扇必须要通过有人大力推才能推开的门,故电流通过这扇门时每次都要巨大努力,出了一身汗,损耗自然也就不少了。
    而同步整流技术有点类似我们通过的较高档场所的感应门了:它看起来是关着的,但你走到它跟前需要通过的时候,它就自己开了,根本不用你自己费大力去推,所以自然就没有什么损耗了。
    通过上面这个类比,我们可以知道,同步整流技术就是大大减少了开关电源输出端的整流损耗,从而提高转换效率,降低电源本身发热。

    同步整流能量再生与同步整流[url=]编辑[/url]
    在开关管V导通时,变压器接收的电能除了磁化电流外都将传送到输出端。而管V关跃的反激作用期间,导向二极管D2用反偏置故不可能有钳位作用或能量泄放的回路。磁化能量将会产生较大的反压加在开关管的集一射极之间。为了防止高反压的产生,设置了“能量再生绕组”P2,由绕组△经过二极管D,,使存储的能量反馈回直流电源Ui中。只要满足Wp1=Wp2的关系,D1流过电流时Up2=Ui,则开关管V上承受的集一射极电压为2Ui。

    为了避免在P1和P2绕组之间存在的漏电感过大,和因此而在开关管集电极上产生过高的电压,一般采用初级绕组P1与能量再生绕组P2双线并绕的方法。在这种配置中,二极管D1接在能量再生绕组如图所示的位置是非常重要的。原因是双线并绕引起的内部杂散电容Cc是在开关管V的集电极与绕组P2和D1连接点之间的寄生电容。按照图中的接法是有优点的,如在开关管V导通时,由于二极管D,反向而隔开了集电极,没有任何的电流在V瞬时导通时流进电容Cc中(注意,绕组P1和P2的非同铭端同时变负,而且Cc的两端电压不会改变)。但是在反激期间,Cc提供开关管V的钳位作用,任何过电压的趋势都会引起Cc流过电流,而且经过D,反馈到电源线上。如果寄生电容不够大,只靠P1、P2绕组磁耦合,钳位电压超值时,常常可以在%位置加外接电容补充以改善它的钳位作用。然而,如果电容值过大时,会使得输出电压线上有输人电压叽纹波频率调制的电压分量,所以要小心地选用附加电容Cc的值。
    在开关管V导通时,输入电压Ui加在(Lp+LLT)上,由于D2反偏置阻止C2的充电,所以Uc2≈0。当开关管V关断时,由于反激作用,V的集电极电压Uc快速上升,但由于砀此时受正偏压而导通,使V电流被C2、R1分流,Uc电压逐渐上升,即U(电压也是逐渐上升,而且钳位在2Ui数值上。从而把Uc上升的尖峰电压的顶部消去,如虚线所示的脉冲尖峰。
    在一个周期剩下的时间里,随着R1放电电流的减小,C2上的电压降会返回到原来值。多余的反激电能,被消耗在R1上。此钳位电压是自跟踪的,在稳态工作时,因为C2上的电压会自动地调整,直到所有多余的反激电能消耗在R1上。如果在所有其他情况下,都要维持某一恒定钳位电压时,则可以通过减小R1值或漏电感Lyp的值,来抑制钳位电压的升高趋势。
    不能把钳位电压设计得太低,因为反激过冲电压也有有用的一面。在反激作用时,它提供了一个附加强制电压值来驱动电能进入到次级电感。使变压器次级的反激电流迅速增加。提高了变压器的传输效率,同时也减小了电阻R)上的损耗。这对于低压大电流输出是很有意义的。

    同步整流同步整流工作原理[url=]编辑[/url]

    从同步整流原理图中可以看出,整流管VT3和续流管VT2的驱动电压从变压器的副边绕组取出,加在MOS管的栅G和漏D之间,如果在独立的电路中MOS管这样应用不能完全开通,损耗很大,但用在同步整流时是可行的简化方案。由于这两个管子开关状态互琐,一个管子开,另一个管子关,所以我们只简要分析电感电流连续时的开通情况,我们知道MOS管具有体内寄生的反并联二极管,这样电感电流连续应用时,MOS管在真正开通之前并联的二极管已经开通,把源S和漏D相对栅的电平保持一致,加在GD之间的电压等同于加在GS之间的电压,这样变压器副边绕组同铭端为正时,整流管VT3的栅漏电压为正,整流管零压开通,当变压器副边绕组为负时,续流管VT2开通,滤波电感续流。栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。


    回复 dsu_marcocopyright:copyright

    使用道具 举报

  • TA的每日心情
    开心
    2022-5-3 10:29
  • 签到天数: 2488 天

    [LV.Master]伴坛终老

    发表于 2016-5-5 11:20 | 显示全部楼层
    LZ码字辛苦啦!
    回复

    使用道具 举报

    该用户从未签到

    发表于 2016-5-5 15:56 | 显示全部楼层
    这种技术贴要多支持, 虽然是简单的C+C C+V。一大堆人只喜欢灌水吵架的学学这个吧。
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2024-4-15 20:47
  • 签到天数: 736 天

    [LV.9]以坛为家II

    发表于 2016-5-5 18:47 | 显示全部楼层
    好文加精
    来自安卓客户端来自安卓客户端
    回复

    使用道具 举报

  • TA的每日心情
    慵懒
    2021-9-3 07:49
  • 签到天数: 941 天

    [LV.10]以坛为家III

    发表于 2016-5-5 18:57 | 显示全部楼层
    图挂了
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2019-4-16 21:10
  • 签到天数: 138 天

    [LV.7]常住居民III

    发表于 2016-7-5 21:04 | 显示全部楼层
    学习了,还没看懂!
    来自苹果客户端来自苹果客户端
    回复

    使用道具 举报

  • TA的每日心情

    2022-3-7 21:36
  • 签到天数: 2133 天

    [LV.Master]伴坛终老

    发表于 2016-7-5 21:35 | 显示全部楼层
    楼主复制粘贴辛苦啦!
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2015-9-5 17:08
  • 签到天数: 7 天

    [LV.3]偶尔看看II

    发表于 2016-7-5 21:57 | 显示全部楼层
    百度百科粘贴过来的给精华是什么逻辑?
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2022-7-23 18:52
  • 签到天数: 23 天

    [LV.4]偶尔看看III

     楼主| 发表于 2016-7-6 08:28 | 显示全部楼层
    itismemario 发表于 2016-7-5 21:57
    百度百科粘贴过来的给精华是什么逻辑?

    方便大家,我只是想。
    没想精华。
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2022-7-23 18:52
  • 签到天数: 23 天

    [LV.4]偶尔看看III

     楼主| 发表于 2016-7-6 08:29 | 显示全部楼层
    另外只要进来看一眼,不久多了解一些吗
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2019-6-9 12:32
  • 签到天数: 53 天

    [LV.5]常住居民I

    发表于 2016-7-8 21:55 | 显示全部楼层
    论坛最近的精华简直让人太恶心了。
    来自苹果客户端来自苹果客户端
    回复

    使用道具 举报

  • TA的每日心情

    2016-8-22 01:07
  • 签到天数: 37 天

    [LV.5]常住居民I

    发表于 2016-7-8 22:36 | 显示全部楼层
    论坛应该收集整理资料 可惜了...
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2017-8-3 22:51
  • 签到天数: 10 天

    [LV.3]偶尔看看II

    发表于 2016-7-8 22:44 | 显示全部楼层
    好帖,学习了
    来自苹果客户端来自苹果客户端
    回复

    使用道具 举报

    该用户从未签到

    发表于 2019-5-5 11:55 | 显示全部楼层
    看不到图?
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2025-1-11 14:14
  • 签到天数: 2934 天

    [LV.Master]伴坛终老

    发表于 2019-5-5 13:36 | 显示全部楼层
    支持一下楼主!引起大家关注和讨论,好事
    回复

    使用道具 举报

    本版积分规则

    小黑屋|手机版|Archiver|论坛自带搜索|下载论坛app|手电大家谈-手电筒爱好者之家 ( 备案序号:鲁ICP备05002565号 )
    以上言论纯属个人观点,与手电大家谈立场无关。
    最佳浏览模式:1920*1080



    GMT+8, 2025-1-13 05:59 , Processed in 0.152776 second(s), 55 queries , Gzip On.

    Powered by Discuz! X3.4

    © 2001-2023 Discuz! Team.

    快速回复 返回顶部 返回列表