led技术全攻略(转)
LED 技术全攻略-工程师必备手册LED应用 2007-11-11 16:34 阅读4466 评论13
字号: 大大中中小小
目录
一、 LED 发展史
二、 LED 的分类
三、 LED 驱动技术原理
四、 LED 驱动设计技巧
五、 LED 驱动设计参考案例及选型指导
六、 LED 散热解决方案
七、 LED 产业链厂商大全
八、 设计参考资料索引
LED 发展史
1907 年 Henry Joseph Round 第一次在一块碳化硅里观察到电致发光现象。由于其发出的黄光太暗,不适合实际应用;更难处在于碳化硅与电致发光不能很好的适应,研究被摒弃了。
二十年代晚期 Bernhard Gudden 和 Robert Wichard 在德国使用从锌硫化物与铜中提炼的的黄磷发光。再一次因发光暗淡而停止。
1936 年,George Destiau 出版了一个关于硫化锌粉末发射光的报告。随着电流的应用和广泛的认识,最终出现了“电致发光”这个术语。 二十世纪 50 年代,英国科学家在电致发光的实验中使用半导体砷化镓发明了第一个具有现代意义的 LED,并于 60 年代面世。据说在早期试验中,LED 需要放置在液化氮里,更需要进一步的操作与突破以便能高效率的在室温下工作。第一个商用 LED 仅仅只能发出不可视的红外光,但迅速应用于感应与光电领域。 60年代末,在砷化镓基体上使用磷化物发明了第一个可见的红光 LED。磷化镓的改变使得 LED更高效、发出的红光更亮,甚至产生出橙色的光。
到 70 年代中期,磷化镓被使用作为发光光源,随后就发出灰白绿光。LED 采用双层磷化镓蕊片(一个红色另一个是绿色)能够发出黄色光。就在此时,俄国科学家利用金刚砂制造出发出黄光的 LED。尽管它不如欧洲的 LED 高效。但在 70 年代末,它能发出纯绿色的光。
80 年代早期到中期对砷化镓磷化铝的使用使得第一代高亮度的 LED 的诞生,先是红色,接着就是黄色,最后为绿色。到 20 世纪 90 年代早期,采用铟铝磷化镓生产出了桔红、橙、黄和绿光的 LED。 第一个有历史意义的蓝光 LED 也出现在 90 年代早期,再一次利用金钢砂—早期的半导体光源的障碍物。依当今的技术标准去衡量,它与俄国以前的黄光 LED 一样源暗淡。
90 年代中期,出现了超亮度的氮化镓 LED,随即又制造出能产生高强度的绿光和蓝光铟氮镓 Led。 超亮度蓝光蕊片是白光 LED 的核心,在这个发光蕊片上抹上荧光磷,然后荧光磷通过吸收来自蕊片上的蓝色光源再转化为白光。就是利用这种技术制造出任何可见颜色的光。今天在 LED 市场上就能看到生产出来的新奇颜色,如浅绿色和粉红色。 有科学思想的读者到现在可能会意识到 LED 的发展经历了一个漫长而曲折的历史过程。事实上,最近开发的 LED 不仅能发射出纯紫外光而且能发射出真实的“黑色”紫外光。那么 LED 发展史到低能走多远,不得而知。也许某天就能开发出能发 X 射线的 LED。早期的 LED 只能应用于指示灯、早期的计算器显示屏和数码手表。而现在开始出现在超亮度的领域。将会在接下的一段时间继续下去。
LED 的分类
常见 LED 的分类
1. 按发光管发光颜色分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管不适合做指示灯用。
2. 按发光管出光面特征分为圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。
圆形灯按直径分为 φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm 及 φ20mm 等。国外通常把 φ3mm的发光二极管记作 T-1;把 φ5mm 的记作 T-1(3/4);把 φ4.4mm 的记作 T-1(1/4)。
由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类:
1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。
2)标准型。通常作指示灯用,其半值角为 20°~45°。
3)散射型。这是视角较大的指示灯,半值角为 45°~90°或更大,散射剂的量较大。
3. 按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。
4. 按发光强度和工作电流分有普通亮度的 LED(发光强度小于 10mcd);超高亮度的 LED(发光强度大于 100mcd);把发光强度在 10~100mcd 间的叫高亮度发光二极管。一般 LED 的工作电流在十几 mA 至几十 mA,而低电流 LED 的工作电流在 2mA 以下(亮度与普通发光管相同)。
白光 LED 介绍
白光LED的合成途径大体上有 2 条路可以走,第一条是RGB,也就是红光LED+绿光LED+蓝光LED,LED走RGB合成白光的这种办法主要的问题是绿光的转换效率底,现在红绿蓝LED转换效率分别达到 30%,10%和 25%,白光流明效率可以达到 60lm/w。
通过进一步提高蓝绿光 LED 的流明效率,则白光流明效率可达到 200lm/w。由于合成白光所要求的色温和显色指数不同,对合成白光的各色 LED 流明效率有不同的。随着白光 LED 的深配色、白平衡:
入发展,人们希望用作照明光源的白光 LED 的光谱、色品坐标、显色性及相关色温等均能满足国际 CIE 和我国的有关标准,否则应认为不合格。我们对相关色温 8000 4000K 白光 LED的光色特性及其与正向电流的关系进行了总结。长期以来,低色温(<4000K)、高显色性的白光 LE D 按照当前主流方案 InGaN 蓝色 LED 芯片和 ce“激活的稀土石榴石黄色荧光体组合的方案实现难度大,成为人们攻关的难题。因为黄色荧光体的发射光谱中缺少红成份。故目前大多数报告限于有关 5000K 以上的高色温白光 LED 的工作。
尽管白光LED已有商品,但缺少低色温白光LED。5000K以上的高色温商品,显色性差,难以满足市场,目前,由蓝色芯片和荧光体组合的低色温白光LED的报告极少。因此,无论从学术上研究,还是应用需要,发展低色温(<4000K)高显色性白光LED具有重要意义。
第二条路是LED+不同色光荧光粉:第一个方法是用紫外或紫光LED+RGB荧光粉来合成LED,这种工作原理和日光灯是类似的,但是比日光灯的性能要优越,其中紫光LED的转换系数可达80%,各色荧光粉的量子转换效率可以达到90%,还有一个办法是用蓝光LED+红绿荧光粉,蓝光LED效率60%,荧光粉效率70%;还有是蓝光LED+黄色荧光粉来构成白光。
两种途径相比较之下,RGB三色LED合成白光综合性能好,在高显色指数下,流明效率有可能高到200lm/w,要解决的主要技术难题是提高绿光LED的电光转换效率,目前只有13%左右,同时成本高。
R、G、B 三基色组成
白色是红绿蓝三基色按亮度比例混合而成,当光线中绿色的亮度为69%,红色的亮度为21%,蓝色的亮度为10%时,混色后人眼感觉到的是纯白色。但LED 红绿蓝三色的色品坐标因工艺过程等原因无法达到全色谱的效果,而控制原色包括有偏差的原色的亮度得到白色光,称为配色。当为全彩色LED 显示屏进行配色前,为了达到最佳亮度和最低的成本,应尽量选择三原色发光强度成大致为3:6:1 比例的LED 器件组成像素。白平衡要求三种原色在相同的调配值下合成的仍旧为纯正的白色。
原色、基色:
原色指能合成各种颜色的基本颜色。色光中的原色为红、绿、蓝,色度图中的三个顶点为理想的原色波长。如果原色有偏差,则可合成颜色的区域会减小,光谱表中的三角形会缩小,从视觉角度来看,色彩不仅会有偏差,丰富程度减少,见下图。
LED 发出的红、绿、蓝光线根据其不同波长特性可大致分为紫红、纯红、橙红、橙、橙黄、黄、黄绿、纯绿、翠绿、蓝绿、纯蓝、蓝紫等,橙红、黄绿、蓝紫色较纯红、纯绿、纯蓝价格上便宜很多。三个原色中绿色最为重要,因为绿色占据了白色中69%的亮度,且处于色彩横向排列表的中心。因此在权衡颜色的纯度和价格两者之间的关系时,绿色是着重考虑的对象。
大功率LED封装结构
随着半导体材料和封装工艺的提高,LED的光通量和出光效率逐渐提高, 从而使固体光源成为可能, 已广泛应用于交通灯、汽车照明、广告牌等特殊照明领域, 并且逐渐向普通照明领域过渡, 被公认为有望取代白炽灯、荧光灯的第四代光源。
不同应用领域对LED光源提出更高要求, 除了对LED出光效率、光色有不同的要求, 而且对出光角度、光强分布有不同的要求。这不但需要上游芯片厂开发新半导体材料, 提高芯片制作工艺, 设计出满足要求的芯片, 而且对下游封装厂提出更高要求, 设计出满足一定光强分的封装结构, 提高LED外部的光利用率。
目前封装多种多样,封装将随着今后的发展,不断改进和迎合实际需要,为LED今后在各个领域应用奠定基础。
LED 驱动技术原理
超高亮 LED 的特性
下图为正向压降(VF)和正向电流的(IF)关系曲线,由曲线可知,当正向电压超过某个阈值(约2V),即通常所说的导通电压之后,可近似认为,IF 与 VF 成正比。见表是当前主要超高亮LED 的电气特性。由表可知,当前超高亮 LED 的最高 IF 可达 1A,而 VF 通常为 2~4V。
由于 LED 的光特性通常都描述为电流的函数,而不是电压的函数,光通量(φV)与 IF 的关系曲线,因此,采用恒流源驱动可以更好地控制亮度。此外,LED 的正向压降变化范围比较大(最大可达 1V 以上),而由上图中的 VF-IF 曲线可知,VF 的微小变化会引起较大的,IF 变化,从而引起亮度的较大变化。所以,采用恒压源驱动不能保证 LED 亮度的一致性,并且影响 LED的可靠性、寿命和光衰。因此,超高亮 LED 通常采用恒流源驱动。
下图是 LED 的温度与光通量(φV)关系曲线,由下图可知光通量与温度成反比,85℃时的光通量是 25℃时的一半,而一 40℃时光输出是 25℃时的 1.8 倍。温度的变化对 LFD 的波长也有一定的影响,因此,良好的散热是 LED 保持恒定亮度的保证。
下图是 LED 的温度与光通量关系曲线。
一般 LED 驱动电路介绍
由于受到 LED 功率水平的限制,通常需同时驱动多个 LED 以满足亮度需求,因此,需要专门的驱动电路来点亮 LED。下面简要介绍 LED 概念型驱动电路。
阻限流电路
如下图所示,电阻限流驱动电路是最简单的驱动电路,限流电阻按下式计算。
式中:
Vin 为电路的输入电压:
VF 为 IED 的正向电流;
VF 为 LED 在正向电流为,IF 时的压降;
VD 为防反二极管的压降(可选);
y 为每串 LED 的数目;
x 为并联 LED 的串数。
由上图可得 LED 的线性化数学模型为
式中:
Vo 为单个 LED 的开通压降;
Rs 为单个 LED 的线性化等效串联电阻。
则上式限流电阻的计算可写为
当电阻选定后,电阻限流电路的 IF 与 VF 的关系为
由上式可知电阻限流电路简单,但是,在输入电压波动时,通过 LED 的电流也会跟随变化,因此调节性能差。另外,由于电阻 R 的接人损失的功率为 xRIF,因此效率低。
线性调节器介绍
线性调节器的核心是利用工作于线性区的功率三极管或 MOSFFET 作为一动态可调电阻来控制负载。线性调节器有并联型和串联型两种。
下图 a 所示为并联型线性调节器又称为分流调节器(图中仅画出了一个 LED,实际上负载可以是多个 LED 串联,下同),它与 LED 并联,当输入电压增大或者 LED 减少时,通过分流调节器的电流将会增大,这将会增大限流电阻上的压降,以使通过 LED 的电流保持恒定。
由于分流调节器需要串联一个电阻,所以效率不高,并且在输入电压变化范围比较宽的情况下很难做到恒定的调节。
下图 b 所示为串联型调节器,当输入电压增大时,调节动态电阻增大,以保持 LED 上的电压(电流)恒定。
由于功率三极管或 MOSFET 管都有一个饱和导通电压,因此,输入的最小电压必须大于该饱和电压与负载电压之和,电路才能正确地工作。
开关调节器介绍
上述驱动技术不但受输入电压范围的限制,而且效率低。在用于低功率的普通 LED 驱动时,由于电流只有几个 mA,因此损耗不明显,当用作电流有几百 mA 甚至更高的高亮 LED 的驱动时,功率电路的损耗就成了比较严重的问题。开关电源是目前能量变换中效率最高的,可以达到 90%以上。Buek、Boost 和 Buck-Boost 等功率变换器都可以用于 LED 的驱动,只是为
了满足 LED 的恒流驱动,采用检测输出电流而不是检测输出电压进行反馈控制。
下图(a)为采用 Buck 变换器的 LED 驱动电路,与传统的 Buek 变换器不同,开关管 S 移到电感 L 的后面,使得 S 源极接地,从而方便了 S 的驱动,LED 与 L 串联,而续流二极管 D 与该串联电路反并联,该驱动电路不但简单而且不需要输出滤波电容,降低了成本。但是,Buck变换器是降压变换器,不适用于输入电压低或者多个 LED 串联的场合。
上图(b)为采用 Boost 变换器的 LED 驱动电路,通过电感储能将输出电压泵至比输入电压更高的期望值,实现在低输入电压下对 LED 的驱动。优点是这样的驱动 IC 输出可以并联使用,有效的提高单颗 LED 功率。
上图(c)为采用 Buck—Boost 变换器的 LED 驱动电路。与 Buek 电路相似,该电路 S 的源极可以直接接地,从而方便了 S 的驱动。Boost 和 Buck-Boosl 变换器虽然比 Buck 变换器多一个电容,但是,它们都可以提升输出电压的绝对值,因此,在输入电压低,并且需要驱动多个LED 时应用较多。
PWM 调光知识介绍
在手机及其他消费类电子产品中,白光 LED 越来越多地被使用作为显示屏的背光源。近来,许多产品设计者希望白光 LED 的光亮度在不同的应用场合能够作相应的变化。这就意味着,白光 LED 的驱动器应能够支持 LED 光亮度的调节功能。目前调光技术主要有三种:PWM 调光、模拟调光、以及数字调光。市场上很多驱动器都能够支持其中的一种或多种调光技术。本文
将介绍这三种调光技术的各自特点,产品设计者可以根据具体的要求选择相应的技术。
PWM Dimming (脉宽调制) 调光方式——这是一种利用简单的数字脉冲,反复开关白光 LED驱动器的调光技术。应用者的系统只需要提供宽、窄不同的数字式脉冲,即可简单地实现改变输出电流,从而调节白光 LED 的亮度。PWM 调光的优点在于能够提供高质量的白光,以及应用简单,效率高!例如在手机的系统中,利用一个专用 PWM 接口可以简单的产生任意占空比的脉冲信号,该信号通过一个电阻,连接到驱动器的 EN 接口。多数厂商的驱动器都支持PWM 调光。
但是,PWM 调光有其劣势。主要反映在:PWM 调光很容易使得白光 LED 的驱动电路产生人耳听得见的噪声(audible noise,或者 microphonic noise)。这个噪声是如何产生?通常白光 LED 驱动器都属于开关电源器件(buck、boost 、charge pump 等),其开关频率都在 1MHz左右,因此在驱动器的典型应用中是不会产生人耳听得见的噪声。但是当驱动器进行 PWM
调光的时候,如果 PWM 信号的频率正好落在 200Hz 到 20kHz 之间,白光 LED 驱动器周围的电感和输出电容就会产生人耳听得见的噪声。所以设计时要避免使用 20kHz 以下低频段。
我们都知道,一个低频的开关信号作用于普通的绕线电感(wire winding coil),会使得电感中的线圈之间互相产生机械振动,该机械振动的频率正好落在上述频率,电感发出的噪音就能够被人耳听见。电感产生了一部分噪声,另一部分来自输出电容。现在越来越多的手机设计者采用陶瓷电容作为驱动器的输出电容。陶瓷电容具有压电特性,这就意味着:当一个低频电压纹波信号作用于输出电容,电容就会发出吱吱的蜂鸣声。当 PWM 信号为低时,白光LED 驱动器停止工作,输出电容通过白光 LED 和下端的电阻进行放电。因此在 PWM 调光时,输出电容不可避免的产生很大的纹波。总之,为了避免 PWM 调光时可听得见的噪声,白光LED 驱动器应该能够提供超出人耳可听见范围的调光频率!
相对于 PWM 调光,如果能够改变 RS 的电阻值,同样能够改变流过白光 LED 的电流,从而变化 LED 的光亮度。我们称这种技术为模拟调光。
模拟调光最大的优势是它避免了由于调光时所产生的噪声。在采用模拟调光的技术时,LED的正向导通压降会随着 LED 电流的减小而降低,使得白光 LED 的能耗也有所降低。但是区别于 PWM 调光技术,在模拟调光时白光 LED 驱动器始终处于工作模式,并且驱动器的电能转换效率随着输出电流减小而急速下降。所以,采用模拟调光技术往往会增大整个系统的能耗。
模拟调光技术还有个缺点在于发光质量。由于它直接改变白光 LED 的电流,使得白光 LED的白光质量也发生了变化!
除了 PWM 调光,模拟调光,目前有些产商的驱动器支持数字调光。具备数字调光技术的白光LED 驱动器会有相应的数字接口。该数字接口可以是 SMB、I2C、或者是单线式数字接口。系统设计者只要根据具体的通信协议,给驱动器一串数字信号,就可以使得白光 LED 的光亮发生变化。
LED 驱动设计技巧
LED 串并联驱动方式参考设计
LED 因其 VF 值特性原因做不到相同,随着温度及电流大小也有些 VF 值也会发生变化,一般不适合并联设计。但是有些情况又不得不并联解决多颗 LED 驱动成本问题,这些设计可以为大家做些参考。
注意需要 VF 值分档,同档 VF 值的 LED 尽量使用在同一产品上面,产品可以保证误差电流在1mA 之内、LED 相对工作恒流状态。
下图采用集成三极管可以保持每路 LED 电流一致,这些三极管在相同温度环境下、相同工艺条件生产出来的 β 值一样,可以保证每路电流基本一样。恒流部分在要求不是很高的条件下可以这样设计,稳定的电压或稳定的 PWM 伏值驱动稳压后的三极管偏压,做到基本恒流。
下图采用精度较高的 IC 做恒流参考源,R 可以设定 IC 输出电流,一经确定 R 阻值可以使用固定电阻代替。多三极管集成器件的使用可以减少 IC 的使用数量,从而减低设计产品成本。
线性大功率 LED 恒流输出可以并联使用,在产品设计中我们往往找不到较大电流的驱动 IC,一般 2A 以上就很少见,标称 2A 的 IC 也不一定可以极限使用。大于 1A 的 IC 工艺成本的原因 MOS 管都是外置,外置 MOS 管线路复杂,可靠性减低。并联使用是有效的设计办法。
下图采用 DD312 并联参考设计直接驱动 3 颗 6W LED。使能 PWM 控制信号需要适当的隔离,免相互干扰和驱动能力问题。EN 使能电压要符合规格书要求,不要电压太高损坏 EN 脚。一般 IC 耐压是指负载和电源,没有注明激励电压请不要大于 5V 设计。
像这种检测在 LED 的一端 LED 恒流驱动 IC 也可以并联设计驱动,实际上 IC 是单独工作的,最后在并流一起。DC-DC 方式是工作在较高的频率上,需要注意的是 PCB 布板时避免交叉设计,各自滤波、旁路电容要紧靠 IC 附近,负载电流最后会和即可。
当然可以 2 并,也可以 3 并或多并联设计,不过要提醒多试之!
LED 驱动设计参考案例及选型指导
大功率 LED 温度保护参考设计
最佳的温度保护居里点温度应该是 80-90℃。最高环境温度,夏天 40℃,在夏日光暴晒 50℃,50℃为最高环境温度,一般大功率 LED 结温度在 120℃是可以承受的,芯片到铝基板的热阻,规格书一般推荐 10-15℃,那 LED 基板要保证在 120-15=105℃。保留温差取 50--105℃中间值 77.5℃,一般电子元器件工作温度在 85℃是可靠的,77℃是符合这个原则。
建议 77℃开始启动保护,85℃前大幅度的减低电流,90℃彻底完成产品温度保护功能。选者居里点在 85℃左右的热敏电阻可以设计出理想电路。
下图用点晶公司 DD311 和 DD312 做参考设计。
手机 LED 应用设计
德州仪器的 TPS61150/1 产品是一款具备双稳压电流输出的白光 LED 驱动器,能够驱动翻盖手机中用于主显示屏与副显示屏 LCD 背光照明的白光 LED。同时,该器件的双通道输出也可驱动显示屏与键区的背光照明,其在单个较大显示屏上可驱动多达 12 个白光 LED。PS61150/1 无需外部有源电源组件的支持,即可实现较高的效率与设计灵活性。
美信 MAX1553/MAX1554 高效率, 升压到 40V 为 2 到 10 白色 LED 的转换器驱动。应用于小LCD 屏和按键区域背光照明。MAX1553/MAX1554 能够以恒定电流驱动串联的白色 LED,为蜂窝电话、PDA 及其它手持设备提供高效的显示器背光驱动。这款升压转换器内部包含一个0V、低 RDSON 的 N 沟道 MOSFET 开关,可提高效率、延长电池寿命。MAX1553 限流为 480mA,可驱动 2 至 6 只白色 LED;MAX1554 限流为 970mA,可驱动多达 10 只白色 LED。一个模拟/PWM Dual ModeTM 输入提供了两种简便的亮度调节方式,单独的使能输入提供开/关控制。软启动可降低启动过程中的浪涌电流。 MAX1553/MAX1554 采用节省空间的 8 引脚 TDFN 3mm x 3mm 封装。
美信 MAX1576 480mA 白色 LED 1x/1.5x/2x 电荷泵式从背光照亮到照相机闪光灯应用。
MAX1576 电荷泵能够以高达 480mA 的总电流驱动两组、每组四个 LED。对于闪烁状态的 LED组,允许每个 LED 电流达到 100mA 的电流。每组 LED 具有独立的电流设置、脉冲亮度调节和2 线亮度控制。利用自适应开关,在单节锂电池的整个放电过程中平均效率可以达到 83%。
对于使用 LED 闪光灯的数码照相机,MAX1576 是理想选择。
LM27964 有 I2C 的独立控制的,多按键区域背光指示应用 IC。 LM27964 芯片还内置 I!C 兼容接口,采用锂电池供电,其输入电压为 2.7~5.5V。这三款白光发光二极管驱动器采用双增益结构,可让稳压器因情况选择适当的输入/输出电压增益,适用于移动电话、个人数字助理、便携式电子游戏机及 MP3 媒体播放器。
LP3954 电话 LED 指示包括展览背光、RGB、按键区和照相机闪光等应用。
LP3954 背光发光二极管驱动器可以控制手持式电子产品发出的各种不同的灯光,最适用于移动电话、数码相机、电子游戏机及 MP3 播放机。
LP3954 的灯光管理单元采用小巧的 micro SMD 封装,内含两个背光驱动器、一个双组装红绿蓝光发光二极管控制器、一个闪灯发光二极管驱动器及一个 A/D 转换器,以上电路全部集成在这颗单芯片之内。在这 些内置的电路之中,高度集成的磁力升压 DC/DC 转换器负责驱动高电流负载,其优点是适用于电池电压范围,而且效率极高。
LP3954 芯片是专门管理便携式系统灯光的管理单元,可以驱动两组各自独立控制的白光发光二极管背光系统,分别为主及副显示屏幕提供背光。部分便携式系统可能只有一 个加大的显示屏幕,在这种情况下,各单元可以汇集一起,一同驱动高达 6 个发光二极管。此外,这两个背光驱动器除了可以调节所有发光二极管,以确保亮度均匀之外,还设有自动调节光暗的功能。
飞兆半导体 FAN5611/12/13/14 PDA/MP3 等低端 LED 背光源应用 IC。FAN5613 是FAIRCHILD 公司生产的低压差白色 LED 驱动器,能并联驱动 4 个白色 LED。 主要特点:压差小于 300mV;4 个并联的 LED 电流匹配,差值<±3%;无需外围元件来匹配 4个 LED 的均流;每个 LED 最大电流可达 40mA;有 EN 端可实现关闭,关闭状态时耗电<1μA;并且可输入 PWM 信号实现 LED 的亮度调节;小尺寸 8 管脚 SC-70 封装;工作温度-40~+85℃。 飞兆半导体 FAN5609 三态泵式背光源驱动(4×20mA) 80mA PDA、DSC、MP3 Players FAN5609 驱动器如何在 LED 之间提供电流匹配,而无需使用限流电阻。唯一缺点是每个 LED都需要连接到驱动器。 并非所有并联 LED 驱动器都需要升压电路。白光 LED 需要的正向电压相对较高。最新的技术趋势是将该电压降低-低于 3V。
LED 大屏幕参考设计
LED 显示屏发展经历了三个阶段:
1. 1990 年以前 LED 显示屏的成长形成时期。一方面,受 LED 材料器件的限制,LED 显示屏的应用领域没有广泛展开,另一方面,显示屏控制技术基本上是通讯控制方式,客观上影响了显示效果。这一时期的 LED 显示屏在国外应用较广,国内很少,产品以红、绿双基色为主,控制方式为通讯控制,灰度等级为单点 4 级调灰,产品的成本比较高。
2. 1990-1995 年,这一阶段是 LED 显示屏迅速发展的时期。进入九十年代,全球信息产业高速增长,信息技术各个领域不断突破,LED 显示屏在 LED 材料和控制技术方面也不断出现新的成果。蓝色 LED 晶片研制成功,全彩色 LED 显示屏进入市场;电子计算机及微电子领域的技术发展,在显示屏控制技术领域出现了视频控制技术,显示屏灰度等级实现 16 级灰度和 64 级灰度调灰,显示屏的动态显示效果大大提高。这一阶段,LED 显示屏在我国发展速非常迅速,从初期的几空企业、年产值几千万元发展到几十家企业、年产值几亿元,产品应用领域涉及金融证券、体育、机场、铁路、车站、公路交通、商业广告、邮电电信等诸多领域,特别是 1993 年证券股票业的发展更引发了 LED 显示屏市场的大幅增长。LED 显示屏平板显示领域的主流产品局面基本形成,LED 显示屏产业成为新兴的高科技产业。
3. 1995 年以来,LED 显示屏的发展进入一个总体稳步提高产业格局调整完善的时期。1995年以来,LED 显示屏产业内部竞争加剧,形成了许多中小企业,产品价格大幅回落,应用领域更为广阔,产品在质量、标准化等方面出现了一系列新的问题,有关部门对 LED 显示屏的发展予以重视并进行了适当的规范和引导,目前这方面的工作正在逐步深化。
LED 屏幕现状
2006 年度销售亿元以上企业
• 上海三思科技发展有限公司
• 南京洛普股份有限公司
• 南京汉德森电子有限公司
• 北京利亚得电子科技有限公司
• 北京世纪澄通电子有限公司
• 惠州德赛光电科技有限公司
• 京东方智能显示技术有限公司
• 深圳市锐拓显示技术有限公司
• 深圳市蓝普科技有限公司
• 深圳市普耐光电科技有限公司
• 深圳联创健和光电有限公司
2006 年,行业内的骨干企业在不断发展和提高。惠州德赛:产能提升,成为国 LED 显示屏产品出口的主要加工基地;北京世纪澄通:基础建设,形成 LED 显示屏专业加工生产能力,跃升行业前列;深圳锐拓、深圳蓝普、深圳钧多利集团等企业:在 LED 器件、显示产品等方面综合发展,成为了业内颇具规模的 LED 显示应用产品供应商;上海信茂完成了转制和结构调整,为未来发展奠定了基础;西安青松、南京洛普、同州电子、南京汉德森等企业:在 LED
显示屏业务的基础上,拓展其他显示产品或系统领域的业务,形成了持续发展的基础。
16 位恒流 IC 的由来:双色屏主要是以显示文字为主,单片机扫描比较方便,由于 LED 数量的增加,为了节省资源,引用 74HC595 移位扫描。为了更适合 LED 的应用在此基础上整合了恒流电流设定功能,更符合需求及成本需要又封装出 16 位器件,被目前全彩屏广泛采用。
目前全球有 80%的 LED 大屏幕生产在中国大陆,LED 大屏幕驱动主流 IC 主要有聚积、点晶、东芝、TI 等。另外还有些厂家的 IC 和用 74HC595 生产的 LED 屏幕企业,这部分恒流IC 每年在大陆的销售额大概在 3 亿多元。
根据 IC 数量结合不同的扫描方式,大概计算出 LED 这部分大屏幕产值在 150 亿元左右。主要的代表 IC 有以下几款:
聚积 MBI5026、点晶 DM13C、东芝 TB62726、德州仪器 TLC5921。
LED 的控制系统通常由主控箱、扫描板和显控装置三大部分组成。主控箱从计算机的显示卡中获取一屏象素的各色亮度数据,然后重新分配给若干块扫描板,每块扫描板负责控制LED 屏上的若干行(列),而每一行(列)上 LED 的显控信号则用串行的方式传送。目前有两种串行传送显示控制信号的方式:一种是扫描板上集中控制各象素点灰度,扫描板将来自控制箱的各行象素的亮度值进行分解(即脉宽调制),然后将各行 LED 的开通信号以脉冲形式(点亮为 1,不亮为 0)按行用串行方式传输到相应的 LED 上,控制其是否点亮。这种方式使用器件较少,但串行传输的数据量较大,因为在一个重复点亮的周期内,每个象素在 16 级灰度下需要 16 个脉冲,在 256 级灰度下需要 256 个脉冲,由于器件工作频率限制,一般只能使 LED 屏做到 16 级灰度。
另一种方法是扫描板串行传输的内容不是每个 LED 的开关信号而是一个 8 位二进制的亮度值。每个 LED 都有一个自己的脉宽调制器来控制点亮时间。这样,在一个重复点亮的周期内,每个象素点在 16 级灰度下只需要 4 个脉冲,256 级灰度下只需 8 个脉冲,大大降低了串行传输频率。用这种分散控制 LED 灰度的方法可以很方便地实现 256 级灰度控制。
一般 LED 大屏幕低频怎么会闪烁,是由于,LED 本身不具有余辉效应的特性,所以采用传统的恒流源脉冲调宽控制灰度的 LED 屏的刷新率必须大于 120Hz 才能实现无闪烁的图像显示。这样就需要对灰度数据较低的输八帧频的图像信号进行增频刷新,其结果造成刷新数据出现了极大冗余度,井增加了 LED 驱动板的硬件开销。
目前市场上多采用南京德普达科技实业有限公司和深圳灵星雨科技发展有限公司控制系统
较多。详细资料可以到上述公司网站查看或咨询。
异形屏幕和级联式灯饰控制设计方式
异形屏幕灵活的点间距和灵活的设计越来越多的受到广泛的采用,能把它制作成我们心目中任意想像的形状,大可以装饰几十层楼整栋大厦,小的可以显示金字招牌。可以避让窗户、楼台等不需要装饰的任何地方;远距离观看,比如海岸、江河对岸观看;大型灯饰广场装饰等。较成熟的控制方式目前有北京中庆微电子公司和常州银港数据系统公司等控制方式产品。
目前可以支持这种设计的 IC 有以下几款:
北京中庆微电子公司 ZQL9712
该芯片是专门为LED驱动应用设计的芯片。采用了先进的CMOS工艺,具有低功耗的优点。ZQL9712 芯片可以应用于LED 显示系统,特比适合多离散点的级连应用。ZQL9712 提供了3 个大电流驱动输出,驱动电流最大为30mA。
ZQL9712 芯片包括串行移位寄存器和输出寄存器。经串行移位寄存器,串移输入转为3bit 并
行输出,并把该输出作为输出寄存器的输入。串移寄存器和输出寄存器由不同的时钟信号控制,并且都是在时钟信号的上升沿有效。ZQL9712 将控制信号驱动后输出,该输出可作为后级电路的输入信号。
杭州士兰微电子公司 SC16722
SC16722是专门为LED驱动设计的芯片,采用先进的CMOS工艺,具有低功耗的优点。电路所有的输入和输出均有内部线路保护功能,以减少由于静电感应应而损坏器件的可能性,具有高抗噪音和驱动负载的能力。
常州银港数据系统公司 SD600
SD600是一款先进的单芯片LED 调光控制芯片,使用两根线实现控制电路的同步通信,使芯片的级联更加方便与灵活。SD600 支持3 路PWM 调光,灰度等级为256,采用高速同步通信接口,数据速率高达10Mbps,SOP10 封装,最多能控制2048 个像素。
深圳彩拓科技有限公司 LPD6803
LPD680 是专门为 LED 灯光系统设计的驱动芯片,CMOS 工艺,提供三路恒流和灰度输出,特别适合离散的多灰阶全彩灯光系统。
台湾点晶科技股份有限公司 DM412
DM412 是一颗具脉波宽度调制(PWM)输出及使能控制的 LED 驱动芯片,专为 LED 照明,装饰,大屏显示等应用而设计。每一输出通道皆可输出高达 16 比特(65,536 级)灰阶的可调线性电流。芯片内含移位缓存器, 数据锁存, 三通道恒流驱动器(电流值可由相对应的三个外挂
电阻调控), 以及做 PWM 功能之用的内建震荡器。数据,时钟,与锁存讯号输出端均内建缓
冲,支持长串接应用。内建 LED 开路侦测功能可帮助使用者找出 LED 开路的具体位置,无
需加上任何外围组件。独特的「输出端极性反转功能」使 DM412 亦能用做「PWM 讯号产生
器」,可与大功率 LED 驱动器(DD311/2/3)搭配,以实现大功率 LED 之 65,536 级灰阶的颜
色变化。
芯片特色
最大恒流输出:200mA (由三个外挂电阻分别控制)
最大输出承受电压: 17V
最大串行输入时钟频率: 20MHz
线性可调电流输出:65,536 级 PWM 灰阶
数据/时钟/锁存讯号输出端均内建缓冲,支持长串接应用
具 PWM 自由运行能力(内置振荡器可达 17.5MHz,产生画面刷新率达 267Hz)
锁存信号输入方式可设定为自动/手动锁存
LED 开路侦测功能
输出端极性反转功能
芯片工作电压: 3.3V ~ 5.5V
应用
LED 装饰与照明、户内/外 LED 视频/讯息显示屏、PWM 信号产生器
封装
SOP16, SSOP16, TSSOP16 (带散热片)
高压驱动部分选型
Supertex 是 LED高压恒流驱动的领导者,是目前推出最多的高压 LED恒流直驱 IC企业之一,
有不断推出新品及改进版本出现,满足市场不断增长的需求。HV9910 是目前市场上高压部
分使用最多的 IC 之一。
这款灵活简单的 LED 驱动器 IC 效率超过 93%,可减少相关元件的数量,从而降低了系统成
本。HV9910 可将调整过的 85V 至 265Vac 或 8V 至 450Vdc 电压源转换为一个恒流源,从而为
串连或并联的高亮 LED 提供电源。
HV9910 应用恒定频率峰值电流控制的脉宽调制(PWM)方法,采用了一个小电感和一个外部开
关来最小化 LED 驱动器的损耗。不同于传统的 PWM 控制方法,该驱动器使用了一个简单的开
/关控制来调整 LED 的电流,因而简化了控制电路的设计。
该驱动器具有内置的降低亮度控制,能协同外部衰减范围在 0 至 100%的 PWM 信号工作,也
可以利用其衰减引脚上外接的任意可在 0 至最大值之间调整的线性控制电压来实现亮度控
制。HV9910 适用于 LED 常规或装饰灯、替代氖灯的 LED 以及其它高压交/直流输入的应用。
以下是目前 Supertex 公司产品线:
Supertex 公司以设计高压 IC 为主,缺点是有些 IC 设计的保护功能不完善;灰度表现欠佳;
串连 LED 个数有限;线路设计布线相对复杂,走线要求严格;一般应用于射灯、MR16 高压
灯杯、洗墙灯等灰度表现不是很高的场合。
在传统的方法中,针对每一LED均配备了专用的脉宽调制(PWM)控制器以控制至多个LED的输
出,并通过控制器将输出电压转换为供给LED的电流。电压控制脉宽调制控制器常用于此用
途。电流感应电阻与LED串联配置,将电压值反馈给控制器。因此,控制器实际上是工作于
电压模式,并保持恒定的取样电压值,从而保持恒定的电流。该典型电路配置如图所示。
深圳泉芯科技与上海华润矽威科有生产间接替代产品,因其国内目前没有 600V 高压 CMS IC
生产制程,巧妙的低压 CMOS 工艺设计,工艺简单性能价格比高。IC 供电采用电阻降压获得,
效率会低些,外置高压 MOS 管,会有同样的效果。
QX9910 可以间接取代 HV9910
改进后的 QX9920 封装更小,性能、成本也有所改进,可以直接做到 MR16 灯杯里面。
上海华润矽威科 PT4107 也是一款类似的 IC,稳压二极管也做在 IC 里面并增加些功能性能价格比高。
PT4107 就是一款针对这一市场趋势开发,针对高功率 LED 照明,输入电压既可为传统的110V/220V 交流电压又可为 18V 以上到数百伏直流电压的 PWM 恒流控制器。它以独特的电路结构,采用峰值电流检测为大功率 LED 提供恒定的供电电流。另外,PT4107 还为使用者提供良好的调光措施(SW1:5K 的可调电位器),并为系统提供了安全可靠的过流过温保护,提高了整个系统的可靠性。整体供电效率可达 80%以上,每个 PT4107 可以驱动 30 串多并的 LED 组合,达到了高效低成本的驱动要求。
深圳光华源科技有封装整合出HA2200**些列IC,可以直接驱动LED灯串、LED日光灯管等产品。
恒流源芯片是一种输出电流恒定的电源变换器,此款恒流源芯片主要是应用于串联LED供电中,每串LED串联个数最多可达到110个,该芯片输入电压为交流85V~240V,输出为一个恒定电流,恒定电流值可由客户预设。该芯片外配电路简洁,无电感、无变压器,因此全部电路组成体积小,可嵌入小体积LED灯具内部。 缺点是功率因数较低,110AC时0.6;220AC只有0.3,个人认为只能是款过度产品,一定会被类似此公司高功率因数IC所取代。
ZD832 是美商齐荣电子公司的产品,线路简单很具代表性,高压直驱小功率 LED 应用。缺点是线性恒流驱动,效率不是很高,串接 LED 个数有限。
线性大功率驱动 IC 选型
LED 驱动 IC 应从,输入电压范围;输出电流要求;串接 LED 个数需要;是否有灰度表现要求;是否需要信号级联传递;价格;交货期和封装适合度等考虑。
AMC7135 是最早得到广泛应用的线性 LED 驱动器之一,特点是压差低只有 200mV,特别符合锂电池和 4V 铅酸电池驱动单颗 LED,广泛应用矿灯、手电筒、应急灯等产品。20-400mA 固定式电流市场上都可以找到。
可供应的厂家有,台湾富微、广鹏科技、台晶光电、杭州士兰、深圳泉芯科技等等公司。 奥地利微电子 AS3691 是一款很据代表性的线性 LED 大尺寸 LCD 背光驱动 IC,将线性 IC 功耗设计的一样出色;反馈采样自动适应 LED VF 值;4 路 LED 恒流输出,符合 R/G/B 颜色组合 3:6:1 高演色性要求。可以应用于高要求背光源、洗墙灯等灯光产品上。 台湾点晶科技公司,以线性大功率 LED 驱动为主,目前在全球线性驱动 IC 设计中很具代表性,在此我们就依点晶科技公司的线性 IC 着重介绍参考设计!
目前市场销售状况良好,采用的厂家越来越多。优点是,线路简单简洁,设计应用方便,灰度表现目前是全球最好的之一(65,536 级)。缺点是,用这些 IC 都需要大功率电源供电,设计成本高。电源部分成本要高过 LED 驱动部分,目前多是洗墙灯、舞台灯光、屏幕等要求颜色变化要求较高的产品上。
灰度表现是今后在 LED 方面设计 IC 中很重要的因数。
单通道大功率 LED 恒流驱动器 DD311
DD311 是一单通道输出的 LED 恒流驱动器,内建电流镜与电流开关组件,是专为驱动大功率LED 而设计的芯片。DD311 可驱动高达 1 安培的沈入电流(sink current),并可透过调整参考输入电流(IREF)来任意设定输出电流的大小。输出电流值约为 100 倍的 IREF,IREF 可由调整外挂电阻或偏压(bias)电压来设定。微调或使能偏压电压可校正 LED 间的亮度不一或实现多颗 LED 间整体亮度同时调整。芯片的输出端可承受高达 36V 的电压,支持多颗大功率LED 的串接应用。内建输出使能端(Enable),可轻易地实现大功率 LED 的高灰阶应用。
DD311 特色
最大输出电流:1A(由参考输入电流 IREF 设定)
最小输出电压要求:1V(当 Iout = 1A 时)
最大输出承受电压:36V (输出通道漏电流小于 0.1uA)
共 32 页,第 32 页 最大输出使能频率:1MHz
绝佳的恒流输出特性
应用
LED 建筑/娱乐/景观照明
LED 一般或特用照明
LED 背光源应用
封装形式
TO-252
单通道大功率 LED 恒流驱动器 DD312
DD312 是专为大功率 LED 应用所设计的恒流驱动器。芯片内含恒流产生电路,可透过外挂电阻来设定输出恒流值。透过芯片的使能端可以控制输出通道的开关时间,切换频率最高达一兆赫(1MHz)。电流输出反应极快,支持高色阶变化及高画面刷新率的应用。内建开路侦测, 过热断电,及过电流保护功能,使应用系统的可靠性大为提升。
DD312 特色
最大输出电流:1A(透过外挂电阻设定)
输出电流为 1A 时所要求的最小输出电压:1V
最大输出承受电压:18V
最大输出使能频率:1MHz
芯片工作电压范围:5 ~ 18V
过电流保护功能
过热断电功能
过热警示功能(SOP8 封装具备)
LED 开路检测功能(SOP8 封装具备)
封装形式
TO-252 或 SOP8(带散热片) SC16722 是专用为 LED 串接级连应用设计的 CMOS 集成电路,可提供全彩三通道 LED 驱动,
内部有信号整形、级连驱动输出、稳压器等线路。适合灯带式结构的 LED 显示驱动应用,电
流大于30mA,允许用户在 5V信号不变的情况下灵活的选择 LED数量。下图是结合点晶DD311、
DD312 做级联式讯号传递设计。
三通道大功率 LED 恒流驱动器 DD313
DD313 是专为大功率 LED 应用所设计的恒流驱动芯片。内建三个恒流输出通道,可透过三个
外挂电阻分别设定输出电流值。并特别设计三个使能端,可个别独立控制三输出通道的开关
时间,切换频率最高达一兆赫(1MHz)。电流输出反应极快,支持高色阶变化及高画面刷新率
的应用。芯片内建过热断电及过电流保护功能,使应用系统可靠性更为提升。
DD313 特色
三输出通道,可个别控制电流与色阶变化
最大输出电流:500mA(分别由三个外挂电阻设定)
最小输出电压要求:0.8V(当 Iout = 500mA 时)
最大输出承受电压:18V
最大输出使能端频率:1MHz
芯片工作电压: 5V ~ 18V
过电流保护功能
过热断电功能
应用
LED 建筑/娱乐/景观照明
LED 一般或特用照明
LED 背光源应用
封装形式
SOP16 或 TSSOP16(带散热片)
DD313 级联式讯号传输设计,级联式设计广泛用于投射灯、地埋灯等需要级联控制的场合。
下图是结合点晶 DD313 做级联式讯号传递设计。
三通道 LED 恒流驱动器 DM413
DM413 是一颗具脉波宽度调制(PWM)输出及使能控制的 LED 驱动芯片,专为 LED 照明,装饰,
大屏显示等应用而设计。芯片内含移位缓存器, 数据锁存, 及三通道恒流驱动器(电流值可
由相对应的三个外挂电阻调控)。内建振荡器可实现 PWM 输出功能,最高达 14 比特的灰阶。
数据输出端与时钟信号输出端皆可串接至下一芯片。独特的「输出端极性反转功能」可与大
功率 LED 之应用做搭配设计,增加了设计延展性。
芯片特色
最大恒流输出:100mA (由三个外挂电阻分别控制)
最大输出承受电压: 17V
最大串行时钟频率: 20MHz
内置缓存,使影像数据与时钟数据串行传输至下一芯片
具 PWM 自由运行能力(内置振荡器可达 6.5MHz,产生刷新率达 400Hz)
三种 PWM 操作模式:
「8 位亮度数据输入」 (8 位模式)
「8 位亮度数据输入」+「6 位整体亮度调整数据输入」 (14 位模式)
「8 位亮度数据输入」+「5 位单点色偏校正数据输入」 (13 位模式)
输出极性反转功能
TTL/CMOS 相容输入位准
芯片工作电压: 3.3V ~ 5.5V
应用
LED 装饰与照明
户内/外 LED 视频/讯息显示屏
PWM 信号产生器 DC-DC 大功率驱动 IC 选型
40V 低压 DC to DC 灯杯、汽车等代表性 IC,因其 IC 种类太多,在此仅介绍具有代表性的 IC,
供大家交流学习。有些高压 IC 也可以应用到这个电压范围,在这里就不在重复介绍。
Zetex Semiconductors plc专门设计、生产及推销离散及综合模拟半导体产品,在业界占有
领导地占。凭借"标准"组件、方便使用的集成电路及完全自订的集成电路,在通信、家电、
汽车、及工业市场,迎战现今电子业开发设计的激烈竞争。低压升压LED恒流器件全系列做
的比较出色的公司之一。
下图输入电压范围从 0.7 V 到 1.6 V 最大输出 335mA,符合单节干电池的单颗LED升压型驱
动IC,广泛应用于军事应急手持设备方面。 下图输入电压范围从 1.6 V 到 2.4V 最大输出 335mA,符合单节干电池的单颗 LED升压型驱
动 IC. 下图输入电压范围从 3.5 V 到 4V 最大输出多颗 LED驱动线路,符合单节锂离子电池供电的
产品。
下图是台湾点晶科技公司一款 DD212,可以 1.5-5.5V 输入电压,2 倍压升压输出最大 400mA。
外围器件是目前最少的之一。
SP6685 是一种恒定电流充电泵。主要用于驱动数码相机和摄像手机中的半导体闪光灯.也可用于摄像机断续高亮度照明灯。该充电泵可以设定二种不同的恒定电流值,分别驱动照相机闪光灯和摄像机照明灯。SP6685 可以自动转换升压和降压工作状态,确保半导体照明灯(LED)的工作电流与正向电压无关。该电路所需的电流采样基准电压很低(50mV),可以用阻值很小的表面贴装电阻器。
凌特美信也有相关参品,可到相应网站参考。
PT4105 是一款大功率LED 驱动用18V 降压转换器。它包含一个PWM 控制器、一个高精度的能带隙参考源、一个误差放大器、相位补偿电路、软启动电路、保护电路、IC 使能电路、输入电压检测电路、逻辑控制电路和功率MOS 管。PT4105 采用固定频率的电压模式来调节LED 电流,其200mV 的低反馈电压可降低功耗和提高效率。此外,PT4105 还含有限流功能以及过热保护功能以避免在输出过载时对器件造成损害。
PT4105 是5-18V 输入电压下驱动白光LED 的理想选择。PT4105 可驱动单颗1W(350mA)或3W(700mA)白光或其他颜色的LED。其宽的输入电压范围和高输出电流能力,也可以用来驱动3 颗串联1W 或3W 白光LED,或者串-并组合驱动3x3 颗1W 白光LED,等等。
AMC7150 是一款应用非常广泛的 LED 降压型驱动 IC,目前市场上有多家公司替代产品出现,可以应用于驱动 3 颗以内 1LED 或 1 颗 3W LED,产品设计中。
下图为美信公司出品的一款高效率, 输入 2.7-5.5V 锂电池电压范围升压到 40V 为 2-10 颗LED 400mA 的转换器驱动。下图为美信一款宽电压范围的 LED 驱动 IC,输入 5.5-40V,电流 35-350mA 多颗 LED 驱动应
用产品。
6-75V 电压输入,500mA 电流恒流驱动 IC,可以广泛的应用于各种高电压浮动的供电范围,
驱动大功率 LED 的相应产品中。
美国国半公司的 LP5520,可以应用于全彩灯饰、背光源大功率驱动等产品。
舞台 LED 应用与 DMX512 灯光协议
DMX512 协议是美国舞台灯光协会(USITT)于 1990 年发布的一种灯光控制器与灯具设备进行数据传输的标准。这包括电气特性、数据协议、数据格式等各方面的内容。
DMX512 电气特性与 RS-485 完全兼容,包括驱动器/接收器的选择、线路负载和多站配置等方面的要求都是一致的。
DMX512 数据协议规定使用 250Kbps 的波特率。
在进行正常数据传输之前,发送 1 个复位信号,声明数据传输的开始。随后的第 1 帧数据称为起始代码,其中包含设备类型码,以指明后续数据的接收设备的类型。最后,按设备编号的顺序给每个设备发送 1 帧数据,依次为:1#设备数据帧、2#设备数据帧,直至最后一个设备。设备总数最多可达 512 个,数据帧间隔为高电平,最长不超过 1s。DMX512 数据格式规定,1 帧数据长度为 11 位。按传送顺序说明如下: 字串 1 第 1 位——起始位,低电平(SPACE); 字串 8 第 2~9 位——数据位,从最低位到最高位(LSB~MSB),正逻辑; 字串 8 第 10、11位——停止位,高电平(MARK); 字串 8 奇偶校验位——不传送。
一般来说具有 RS-232 接口的单片机都可以实现的。
多个 DMX512 模块组合在一起构成一个灯光装饰系统,并可控制该系根据需要以不同的颜色,亮度,组合,按不同的时间间隔进行显示,从而实现多彩而生动的效果。并可以需求实时进行各种组合的改变和变化。
因时间问题,这次不能完整上载方案,今后将专版介绍DMX512 系统与现有LED恒流驱动整合设计方案及源程序,有急需者可至邮件:wmq@gd165.com 索取。
LED 散热解决方案
LED 铝基板设计选择
LED 线路设计为了更好的解决散热问题,LED 和有些大功率 IC 需要用到铝基线路板。
铝基板 pcb 由电路层(铜箔层)、导热绝缘层和金属基层组成。电路层要求具有很大的载流能力,从而应使用较厚的铜箔,厚度一般 35μm~280μm;导热绝缘层是 PCB 铝基板核心技术之所在,它一般是由特种陶瓷填充的特殊的聚合物构成,热阻小,粘弹性能优良,具有抗热老化的能力,能够承受机械及热应力。IMS-H01、IMS-H02 和 LED-0601 等高性能 PCB 铝基板的导热绝缘层正是使用了此种技术,使其具有极为优良的导热性能和高强度的电气绝缘性能;金属基层是铝基板的支撑构件,要求具有高导热性,一般是铝板,也可使用铜板(其中
铜板能够提供更好的导热性),适合于钻孔、冲剪及切割等常规机械加工。工艺要求有:镀金、喷锡、osp 抗氧化、沉金、无铅 ROHS 制程等。
基材:铝基板产品特点:绝缘层薄,热阻小;无磁性 ;散热好;机械强度高产品标准厚度:0.8、1.0、1.2、1.5、2.0、2.5、3.0mm 铜箔厚度:1.8um 35um 70um 105um 140um 特点: 具有高散热性、电磁屏蔽性,机械强度高,加工性能优良。 用途: LED 专用 功率混合 IC(HIC)。 铝基板是承载 LED 及器件热传导,散热主要还是靠面积,集中导热可以选择高导热系数的板材,比如美国贝格斯板材;慢导热或散热国产一般材料即可。价格相差较大,贝格斯板材生产出成品大概需要 4000 多元平米,一般国产材料就 1000 多元平米。LED 一般使用电压不是很高,选择 1mil 厚度绝缘层耐压大于 2000V 即可。 散热参考设计方法:
为什么要进行热设计?
高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。
温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降, 一般变压器、扼流圈的允许温度要低于 95C;度过高还会造成焊点合金结构的变化—IMC 增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致组件失效。
热设计的目的
控制产品内部所有电子元器件的温度,使其在所处的 工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。
LED 散热设计一般按流体动力学软件仿真和做基础设计。
流体流动的阻力:由于流体的粘性和固体边界的影响,使流体在流动过程中受到阻力,这个阻力称为流动阻力,可分为沿程阻力和局部阻力两种。
沿程阻力:在边界沿程不变的区域,流体沿全部流程的摩檫阻力。
局部阻力:在边界急剧变化的区域,如断面突然扩大或突然缩小、弯头等局部位置,是流体的流体状态发生急剧变化而产生的流动阻力。
通常 LED 是采用散热器自然散热,散热器的设计分为三步
1:根据相关约束条件设计处轮廓图。
2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化。
3:进行校核计算。
散热器的设计方法
自然冷却散热器的设计方法
考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于 12mm,如果散热器齿高低于10mm,可按齿间距≥1.2 倍齿高来确定散热器的齿间距。
自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿。
自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热。
由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于 5mm 以上。
LED 产业链厂商大全
LED 芯片及 LED 恒流驱动公司
- 日亚化学(NICHIA)
www.nichia.com
- Cree
www.cree.com
- 研诺逻辑(AATI)
www.analogictech.com
- Catalyst
www.catsemi.com
- Rohm
www.rohm.com.cn
- Zetex
www.zetex.com/china/index.htm
- 凌力尔特(Linear)
www.linear.com.cn
- 美国国家半导体(NSC)
www.national.com
- 安森美半导体 (ON-Semi)
www.onsemi.com
- 恩智浦半导体(NXP)
www.cn.nxp.com
- Philips Lumileds
www.lumileds.com
- 天下明科技有限公司
www.ledpower.com.cn
- 北京思旺电子技术有限公司
www.seawardinc.com.cn
- 聚积科技股份有限公司
www.mblock.com.tw
- Leadis
www.leadis.com
- 点晶科技股份有限公司
www.siti.com.tw
- 首尔半导体
seoulsemicon.co.kr
- Technologies(安华高科技)
www.avagotech.cn
- 深圳市泉芯技术有限公司
www.qxmd.com.cn
应用设计公司
深圳磊明科技有限公司
磊明是中国领先的 LED 应用产品及解决方案提供商,致力于向客户提供创新的满足其需要的产品、服务和解决方案,为客户创造持续的价值和未来发展。磊明产品和解决方案涵盖户外景观照明,楼宇灯光装饰,户内照明与灯饰,超大屏幕户外视频广告等领域。
磊明以香港科技大学为依托,并在深圳设立研发和生产基地,主要的代表工程有:
河南艺术中心是河南省政府确定的“十五”期间重点项目,位于郑州市郑东新区 CBD 核心区,总建筑面积 75000 平方米。建筑方案由五个椭圆体和两片翻卷上升的艺术墙组成,我司提供艺术中心五个球体联动的灯光系统控制方案及产品。该项目球体间距离较远,实际连接距离都有 400 米以上,光源间的间距为 2 到 4 米,而且要求实现 5 个球体的灯光的联动,对制系统的挑战很大。该司使用行业内最强大的由 DC9000B 控制器,路由器构成的控制系统,采用联机系统实现 5 个球体实时联动。
项目自 2006 年年底动工,亮灯后以其磅礴的气势和丰富的灯光效果引来无数人驻足观看。
花园城中心位于深圳南山区,集购物、餐饮、休闲娱乐为一体,其外型新颖现代,内部线条流畅,圆锥入口,通透中庭。该中心最引人注目的就是城中心入口处的一个锥形空间,顶端是一个大型玻璃半球,此半球体被视为整个建筑的精髓部分,半球表面均为半透明钢化玻璃结构。项目将整个玻璃半球演变为一个大型的 LED 灯光显示屏,把漆黑的夜晚变成一个五彩斑斓的光的世界,实现了不规则形体的点光源安装,布灯均匀,效果方向一致。
巴可公司
Barco 是世界专业市场上领先的视频和显示解决方案供应商。公司凭借其深入的市场经验,设计并开发了基于大屏幕显示的解决方案、应用于生命医学领域的显示解决方案和可视化监系统的解决方案。
目前,Barco 正积极涉足于控制室系统、模拟仿真和虚拟现实系统、演出与会展系统、媒体与娱乐系统、数字电影系统、空中交通管制系统、国防与安全、医疗成像系统、航空电子设、纺织品和食品分类市场。
Barco 的总部位于比利时,公司在欧洲、南北美洲及亚太地区都设有自己的市场销售、客户
服务机构和生产研发基地。Barco 在全世界约有 4200 名员工,2005 年公司的销售额达到了
7.12 亿多欧元。
北京故宫博物院
系统类型:3 通道前投柱型屏幕系统
系统主要特点: 图象高度 4.2 米,半径 8.5 米,105 度。Barco 提供系统所有部分的设计、
加工、安装调试和长期维护。采用 Galaxy 5000 及其系统优化选项, 配备电子融合以及可升
降的光学融合装置。
安装地点:中国北京
安装日期:2003 年
《满城尽带黄金甲》全球首映典礼
产品型号:I-Lite 6 LED
安装地点:中国北京
安装日期:2006 年
香港真明丽集团公司
香港真明丽集团成立于 1979 年,27 年风雨征途,2 万名公司职员工在公司领导层的正确领
导下,团结一心,同舟共济,经过不懈努力和苦心经营,如今已使公司成为全球规模最大的
装饰灯生产企业。
作为驰名灯饰业界的国际型现代化集团企业,真明丽集团下辖三个主要成员公司:鹤山真明
丽灯饰有限公司、鹤山银雨灯饰有限公司、鹤山银雨照明有限公司。集团企业拥有三大强势
品牌:Neo-Neon 银雨照明、银雨灯饰及意大利 Targetti 照明灯,囊括了 LED 产品、装饰灯、
舞台灯、光纤及室内外建筑照明等五大系列!
真明丽集团拥有远东地区最大的专业娱乐灯光(舞台灯)生产基地,拥有职员工 2000 名左
右,配备 60 多名专业工程师(包括多名外籍工程师),平均日产量愈 1000 台!工厂拥有最
优秀的专业技术人员、最先进的管理技术及生产设备,于 1997 年便获得了 ISO9001 国际品
质认证,并通过美洲、欧洲等国家的安全标准认证,如 CE、UL、GS 等。产品系列囊括 500
多个种类,主要包括有:电脑扫描灯光、智能化娱乐灯光、舞台效果器、数码控台、专业调
光设备、激光表演系统、LED 应用产品、智能建筑照明等。近年来公司通过并购、合股及合
作等方式与众多国外世界级专业制造商逐步建立起紧锣密鼓的战略合作伙伴关系,日益国际
化。
上海大峡谷光电科技有限公司
上海大峡谷光电科技有限公司专业从事研制、开发、生产各种室内外 LED 产品,半导体照明
产业化技术开发。2002 年特别投入资金成立 LED 照明应用之科技人本研发团队,专攻于 LED
模组化应用控制系统、人本科技智慧软件的研究开发。2004 年已推出的。VDCS(Vision
Dynamic Color- lighting System)系列控制器及应用软件,2005年又推出了全兼容的 DMX512
共 52 页,第 52 页
标准系列控制器及应用软件视觉动感彩光系统,2006 年又连续推出了 Strong LED 全彩实时
显示控制系统,TCP/IP 网络视频播放器,ARM 平台异步实时显示控制系统,专业于建筑体、
桥梁工程、景观、酒店、商场、商业空间等设计应用。系统内容包含:设计编程软件、工程
图,施工图生成、模拟效果图、预算书、集电系统、程序控制中心、通信板、LED 模组。为
投资业主及建筑师,设计师、照明工程业者和施工工程师等专业人员提供了建筑艺术视觉动
感彩光照明的全方位技术问题解决方案。
“东方明珠”上海有四个赫赫有名的商圈,其中最有名的要数有小上海之称的徐家汇中心广
场,美罗城地处徐家汇商业圈的中央,豪华繁荣集于一体、购物休闲融于一炉,为明珠中的
明珠。
在美罗城景观亮化设计中充分考虑到美罗城的独特地位和卓然建筑气质,以美罗城总面积约
3000m
2
的球体为重点,采用户外像素条形彩屏沿球体纬线安置,在条形屏间安置LED点状光
源,可实时播放FLASH动画、文字、VIDEO等视频画面, 可以播放广告、图形、文字来回收
投资,美罗城卓越地位和独特的建筑灯光景观是广告收入的保障;在节假日可播放节日相关
图形文字来烘托整个商圈的繁华热闹的氛围。
鉴于美罗城建筑的独特魅力,可选择播放一些绚丽、神秘、时尚的视频,用灯光塑造出新的
品牌形象,营造卓然不群超现代的时尚感!
设计参考资料索引
免费技术文档下载
1. 用LED替代低效率的MR16 卤素灯
http://www.powersystems.eetchina.com/ART_8800486846_2400004_TA_5e93ff21.HTM
2. 串联或并联白光LED的供电方案:电荷泵与升压型DC-DC转换器
http://www.powersystems.eetchina.com/ART_8800486853_2400004_TA_f13a6422.HTM
3. 功率LED驱动器具备的要素
http://www.powersystems.eetchina.com/ART_8800481175_2400004_TA_1efc0c2a.HTM
4. 高效率及高功率闪光灯设计技巧
http://www.powersystems.eetchina.com/ART_8800480459_2400004_TA_d29cec66.HTM
5. 基于电荷泵的多LED驱动器设计
http://www.powersystems.eetchina.com/ART_8800480457_2400003_TA_857c0bef.HTM
6. 为高亮度LED提供高效电流驱动
http://www.powersystems.eetchina.com/ART_8800474806_2400004_TA_3031a255.HTM
7. LED驱动设计和选择指南
http://www.powersystems.eetchina.com/ART_8800473631_2400004_AN_d7b169b9.HTM
8. 白光LED升压转换器和电荷泵的比较
http://www.powersystems.eetchina.com/ART_8800472783_2400004_AN_2276be2f.HTM
9. 数码相机闪光灯充电电路分析
http://www.powersystems.eetchina.com/ART_8800472781_2400004_TA_c22f2da3.HTM
10. 控制多个LED的功率及成本
http://www.powersystems.eetchina.com/ART_8800473025_2400004_TA_e7e89127.HTM
11. 应用指南:隔离式、带功率因数校正的 17W LED驱动器
http://www.powersystems.eetchina.com/ART_8800471629_2400004_AN_a0a99587.HTM
12. 应用指南:0.5 W非隔离恒流LED驱动器
http://www.powersystems.eetchina.com/ART_8800471628_2400002_AN_26396f67.HTM
13. 无源PFC LED照明电源设计指南
http://www.powersystems.eetchina.com/ART_8800471627_2400002_AN_e55387dd.HTM
14. 控制多LED的功率和成本
http://www.powersystems.eetchina.com/ART_8800469305_2400004_TA_beab40b4.HTM
15. 高电流相机LED闪光灯驱动器的简单超时保护
http://www.powersystems.eetchina.com/ART_8800467874_2400003_TA_09a00398.HTM
16. 采用开关电容器电路的高效白光LED驱动方案
http://www.powersystems.eetchina.com/ART_8800466690_2400002_TA_f749906f.HTM
17. LED驱动电路概述
http://www.powersystems.eetchina.com/ART_8800466700_2400002_TA_acc3d79d.HTM
18. 采用感应式开关调节器电路的白光LED驱动方案
http://www.powersystems.eetchina.com/ART_8800466693_2400002_TA_bdf98a68.HTM
19. TLC5940 的点校正功能补偿了LED亮度的偏差
http://www.powersystems.eetchina.com/ART_8800462983_2400004_TA_24d312a7.HTM
20. 为白光LED驱动选择最好的拓扑
http://www.powersystems.eetchina.com/ART_8800463738_2400004_TA_8ad656bf.HTM
21. 用PWM亮度调节为LED视频显示器提供一流色彩质量
http://www.powersystems.eetchina.com/ART_8800462976_2400004_AN_9cc417e5.HTM
22. 为可拍照手机选择合适的闪光灯驱动方案
http://www.powersystems.eetchina.com/ART_8800464467_2400004_TA_7947c196.HTM
23. 面向便携设备的白光LED驱动应用指南
http://www.powersystems.eetchina.com/ART_8800462504_2400003_TA_0a56de57.HTM
24. LED驱动器设计考虑
http://www.powersystems.eetchina.com/ART_8800462989_2400003_TA_3c789188.HTM
25. 具超乎想象的小尺寸TPS7510x型LDO白光LED驱动器设计
http://www.powersystems.eetchina.com/ART_8800462042_2400004_TA_6f6f99a3.HTM
26. 采用紧凑的无电感升压电路调节白光LED的偏置电流
http://www.powersystems.eetchina.com/ART_8800459517_2400004_TA_51f21c18.HTM
27. 高效高功率闪光灯设计技巧
http://www.powersystems.eetchina.com/ART_8800457722_2400004_AN_93dda2f8.HTM
28. 通过NCP5608 LED驱动器实现额外功能
http://www.powersystems.eetchina.com/ART_8800458416_2400004_TA_db494106.HTM
29. 通过I2C软件控制双LED驱动器NCP5602
http://www.powersystems.eetchina.com/ART_8800457386_2400004_AN_456eba2c.HTM
30. 基于电荷泵的多LED驱动器
http://www.powersystems.eetchina.com/ART_8800457383_2400004_AN_1f3a95d1.HTM
31. AND8264/D 执行单线协议
http://www.powersystems.eetchina.com/ART_8800452313_2400002_AN_de21e9b2.HTM
32. NCP5612 型高效超小型最薄白光LED驱动器
http://www.powersystems.eetchina.com/ART_8800452296_2400002_AN_ff797587.HTM
33. 手机相机的LED闪光灯驱动设计
http://www.powersystems.eetchina.com/ART_8800446317_2400004_TA_9b5a020a.HTM
设计参考资料
1. LED驱动技术交流与经验分享
http://www.powersystems.eetchina.com/ART_8800479450_2400004_TA_a353c384.HTM
2. 多彩LED背光灯的设计方法
http://www.powersystems.eetchina.com/ART_8800478737_2400001_TA_ca2bb57d.HTM
3. 移动电话与PDA应用中LED照明驱动电路的设计
http://www.powersystems.eetchina.com/ART_8800457619_2400004_TA_abc18fde.HTM
4. 照明用LED驱动器需求和解决方案分析
http://www.powersystems.eetchina.com/ART_8800457619_2400004_TA_abc18fde.HTM
5. 用配电开关来驱动LED
http://www.powersystems.eetchina.com/ART_8800456741_2400004_TA_4b828746.HTM
6. 面向微型LED的更小驱动器——延长电池寿命并减小电路空间
http://www.powersystems.eetchina.com/ART_8800455690_2400004_TA_6de44c72.HTM
7. 设计非隔离型反激LED驱动器
http://www.powersystems.eetchina.com/ART_8800454943_2400004_TA_da5bc0a0.HTM
8. 手机白光LED驱动电路解决方案分析
http://www.powersystems.eetchina.com/ART_8800427445_2400004_TA_4da01d4b.HTM
与LED业界同仁互动
http://forum.powersystems.eetchina.com/FORUM_TOPIC_1000039152_0.HTM
转帖自:http://blog.163.com/zhihuagu@126/blog/static/162948382007101143414214/ 这个帖子真好~~ 学习贴{:1_268:} 哇,坐老大的前排 站位 值得学习,链接还没来得及细看,顶完再看 想理解到,还真是需要一点基本功,我是不行啊 辛苦了{:1_268:}{:1_270:}。 楼主辛苦了!!好贴 顶起顶起,新人必读贴!学习了! 好
我进来学习了 必须来学习 好全啊,有几个企业和我们还有关系呢 MARK
慢慢学
估计学会了就可以改行做LED了{:1_246:} 来学习! 好收藏。 呵呵对我来说只能了解一下{:1_217:}